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ABSTRACT

Linear inversion is defined as the linear approximation of a
direct-inverse solution. This definition leads to data require-
ments and specific direct-inverse algorithms, which differ
with all current linear and nonlinear approaches, and is im-
mediately relevant for target identification and inversion in
an elastic earth. Common practice typically starts with a di-
rect forward or modeling expression and seeks to solve a for-
ward equation in an inverse sense. Attempting to solve a di-
rect forward problem in an inverse sense is not the same as
solving an inverse problem directly. Distinctions include dif-
ferences in algorithms, in the need for a priori information,
and in data requirements. The simplest and most accessible
examples are the direct-inversion tasks, derived from the in-
verse scattering series �ISS�, for the removal of free-surface
and internal multiples. The ISS multiple-removal algorithms
require no subsurface information, and they are independent
of earth model type. A direct forward method solved in an in-
verse sense, for modeling and subtracting multiples, would
require accurate knowledge of every detail of the subsurface
the multiple has experienced. In addition, it requires a differ-
ent modeling and subtraction algorithm for each different
earth-model type. The ISS methods for direct removal of
multiples are not a forward problem solved in an inverse
sense. Similarly, the direct elastic inversion provided by the
ISS is not a modeling formula for PP data solved in an inverse
sense. Direct elastic inversion calls for PP, PS, SS, … data,
for direct linear and nonlinear estimates of changes in me-
chanical properties. In practice, a judicious combination of
direct and indirect methods are called upon for effective field
data application.

Manuscript received by the Editor 6 February 2009; revised manuscript rec
1University of Houston, Houston, Texas, U.S.A. E-mail: aweglein@uh.edu
2Formerly University of Houston, Houston, Texas, U.S.A.; presently Cono
3Formerly University of Houston, Houston, Texas, U.S.A.; presently West
4PETROBRAS Research and Development Center, Rio de Janeiro, Brazil.
2009 Society of Exploration Geophysicists.All rights reserved.
WCD1

Downloaded 19 May 2011 to 129.7.52.192. Redistribution subject to S
INTRODUCTION

We begin with a set of definitions and a discussion of terms and
oncepts used here. We illustrate how these terms are used within a
ontext of current and conventional seismic processing. That assists
dentifying how the contribution, message, and algorithms of this
aper depart from and add to the current understanding and advance-
ent of seismic theory and practice.
In the next section, we define forward and inverse processes and

roblems, define direct and indirect solutions, describe modeling as
direct forward procedure, and introduce and define intrinsic and

ircumstantial nonlinearity.

DEFINITIONS, CENTRAL ISSUES AND GOALS
OF DIRECT NONLINEAR INVERSION,

AND DISTINGUISHING INDIRECT
FULL-WAVEFORM MODEL-MATCHING

FROM DIRECT INVERSION

orward and inverse problems

A forward problem inputs the medium properties and the source
haracter and outputs the wavefield everywhere inside and outside
he medium of interest. The inverse problem inputs measurements of
he wavefield outside the medium of interest and the source charac-
er. It outputs processing goals that include locating structure/reflec-
ors at their correct spatial location and identifying the changes in the
arth’s mechanical properties across the imaged reflectors. We adopt
he inclusive definition of inversion, which accommodates �1� the
etermination of subsurface properties, e.g., structure and medium
roperties, and �2� intermediate inversion goals associated with pro-
essing tasks �like multiple removal� that facilitate subsequent deter-
ination of structure and medium properties.
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WCD2 Weglein et al.
irect and indirect methods

Methods for achieving these forward and inverse goals are classi-
ed as direct or indirect. Modeling methods are typically direct: they

nput medium properties and output the wavefield directly. Inverse
ethods that input seismic recorded data and output medium proper-

ies, or other seismic-processing objectives, straight away and di-
ectly are direct inverse methods. Indirect seismic inversion or pro-
essing methods do not output medium properties or seismic pro-
essing objectives directly. Instead, they seek and search, locally and
lobally, and consider possible candidates that emulate a character-
stic, property or invariance that a direct solution would automatical-
y satisfy �e.g., Tarantola, 1990; Stoffa and Sen, 1991; Pratt, 1999;
irgue and Pratt, 2004; Landa et al., 2006; Vigh and Starr, 2008, and
eferences therein�. Through the satisfaction of that property, indi-
ect methods seek a solution.

irect modeling methods

There are many direct methods that model and generate seismic
ata. Modeling methods include �1� finite difference, �2� finite ele-
ent, �3� reflectivity, �4� Cagniard-De Hoop, �5� lattice Boltzmann,

nd �6� the forward-scattering series. Another example of modeling
s given by the Zoeppritz equations. The Zoeppritz equations model
lastic plane-wave reflection and transmission coefficients, and pro-
ide closed-form expressions that input changes in mechanical
roperties across a horizontal boundary, the incident plane-wave an-
le, and the type of incident wave to predict, directly and nonlin-
arly, the various elastic reflection and transmission coefficients of
aves that are generated by the incident plane wave and that ema-
ate from the boundary. All of these modeling methods input medi-
m properties and directly output the wavefield. They are direct
odeling methods.

efining intrinsic and circumstantial nonlinearity and
heir roles in direct inversion theory

Certain forward and inverse processes commonly are recognized
s inherently nonlinear. The most well known are the Zoeppritz rela-
ionships between the changes in mechanical properties across a hor-
zontal interface between two elastic half-spaces and the reflection
nd transmission coefficients given by the Zoeppritz equations.
oeppritz is a forward direct and closed-form nonlinear relationship,
nd it is the archetypical intrinsic or innate nonlinearity. Intrinsic �or
nnate� means that only detailed accurate information everywhere in
he subsurface can avoid that nonlinearity. The forward nonlinearity
mplies an inverse nonlinearity. From an inverse point of view, the
nly way to avoid that Zoeppritz type of nonlinearity is to know the
ntire subsurface. If one is interested in determining the mechanical
roperties in any region of the subsurface that initially is unknown,
hen one is facing intrinsic nonlinearity. If we assume, e.g., complete
nowledge of all medium properties �not only velocity� down to a
iven reflector, and what is beneath that reflector is unknown, then
e are facing the nonlinear inverse of inverting the nonlinear for-
ard Zoeppritz equations and/or their multidimensional generaliza-

ion for property changes across that reflector.
Downloaded 19 May 2011 to 129.7.52.192. Redistribution subject to S
rocesses that are sometimes linear or nonlinear,
ircumstantial nonlinearity, removing multiples, and
epth imaging primaries

There are other forward and inverse processes that are commonly,
easonably, and correctly considered as linear. For example, �1�
epth imaging for structure with an accurate velocity model and �2�
odeling and subtracting water-bottom multiples are linear meth-

ds for migration and multiple removal, respectively. Each case re-
uires a priori information but not for the entire subsurface — only
nough a priori information to achieve the stated goal. In circum-
tances where relevant and accurate a priori information is unavail-
ble or inadequate to achieve the two above-mentioned goals �di-
ectly depth imaging with an accurate velocity model and modeling
nd subtracting multiples�, the inverse scattering series �ISS� offers
he opportunity to achieve each of these two goals �which are linear-
y achievable with a priori information� directly and nonlinearly in
erms of the data and without a priori information. We define that
ype of nonlinearity as circumstantial nonlinearity.

hird type of nonlinearity: the combination of
ntrinsic and circumstantial

There is a third kind of nonlinearity that is a combination of the in-
rinsic and circumstantial types. The third kind of nonlinearity can
ake place in, e.g., a situation where the goal is to determine the loca-
ion and changes in mechanical properties across a specific reflector
nd there is an unknown overburden above that reflector. The latter
oal also is within the promise and purview of the inverse scattering
eries. It is directly achievable in terms of nonlinear relationships of
he data, without knowing, needing, or determining overburden in-
ormation.

The ISS is the only method that can directly invert and address ei-
her the intrinsic or the circumstantial nonlinearity, when they occur
eparately, let alone accommodate this nonlinearity when they occur
imultaneously, i.e., together and in combination. An example of a
ombined �type-three nonlinearity� is the direct target identification
eneath an unknown overburden. Target identification is intrinsical-
y nonlinear by itself and the unknown overburden adds circumstan-
ial nonlinearity to the mix.

The ISS is the only multidimensional direct inversion for acoustic
r elastic media. However, it took that general ISS machinery to pro-
ide the first direct inverse solution to the simplest and archetypical
ingle-interface intrinsic nonlinear forward problem, defined by the
orward Zoeppritz equations. The ISS provides an order-by-order
in terms of data� solution for inverting that type of plane-wave re-
ection data to determine the changes in mechanical properties
cross a specific reflector. What reflection data are required as input
o allow this first direct solution to provide the changes in mechani-
al properties across that single interface?

The message from the only direct inverse method is that PP data
re fundamentally insufficient for direct linear or nonlinear inver-
ion, and that all components PP, PS, SS, …are required before one
ets started. The direct order-by-order solution for any one or all
hanges in mechanical properties across that single reflector, explic-
tly call upon all those independent data components. That message
s itself at variance with the extensive published literature on target
dentification, elastic parameter estimation, amplitude variation
ith offset �AVO�, full-waveform inversion, iterative linear inver-

ion, global and local search engines, optimization schemes, model
atching, common-image-gather flatness, and optimal trajectory
EG license or copyright; see Terms of Use at http://segdl.org/
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Linear inversion WCD3
tacking, i.e., “path integral” — essentially all current seismic prac-
ice and theory. The only direct inversion method has a definitive
tatement on how �for the first time� to directly compute linear and
igher-order terms for the changes in mechanical properties.

Perhaps it should come as no surprise that this direct solution has a
iew that is different and at odds with every manner of indirect think-
ng and algorithm. The divergence between direct and indirect think-
ng and algorithms is immediate, significant, and substantive for the
ase of elastic target identification and inversion, and methods that
epend on those results. In the elastic case, direct inversion commu-
icates unambiguously and clearly that indirect inversion methods
oday are using wrong and fundamentally insufficient data. Indirect

ethods on their own have no way of recognizing it.
Given the choice between the direct and definitive solution of the

quation x�1�2, found by subtracting 1 from both sides of the
quation, and indirect searching for numbers that make some
eighted integrated measure of the difference between x�1 and 2

mall, which one would we trust, and have confidence in, as a meth-
dology and framework?

hen is an inverse problem (or processing goal) the
irect forward problem run backward?

In cases where a specific inverse task is directly and exactly
chievable in a linear manner with adequate a priori information �for
xample, determining the spatial location of reflectors given an ac-
urate velocity model, or modeling and removing water-bottom
ultiples�, then modeling with a priori information is essential to

chieve the inverse task. It is only under that type of circumstance
hat a link between the direct modeling and direct inverse exists.
hese two linear-inverse-task examples are derivable starting from

he wave equation, wave propagation and imaging methods, or wave
odeling and subtraction methods, respectively.

hen is an inverse problem (or processing goal) not
he direct forward problem solved in an inverse sense?

For any nonlinear inverse problem �whether intrinsic, circum-
tantial or a combination� the direct forward problem solved in an in-
erse sense and the direct solution of the inverse problem are not
qual. Removing multiples without a priori information is achiev-
ble with a direct-inversion ISS subseries, but removing multiples
ith direct forward modeling and subtraction requires all a priori in-

ormation that relates to the subsurface experience of the multiples.
olving a forward problem in an inverse sense for changes in me-
hanical properties would imply PP data are necessary and suffi-
ient, but solving the direct elastic inverse problem for changes in
echanical properties requires all PP, PS, SS, and SP components as

ecessary and sufficient data for linear and higher-order direct inver-
ion estimates.

n amazing and fortuitous property concerning how
he ISS addresses circumstantial nonlinearity

An additional intriguing and amazing fact concerns a shared prop-
rty of all inverse scattering subseries that address circumstantial
onlinearity. ISS subseries that address any circumstantial nonlin-
arity always determine first if their services are called for in any
iven data set, and if so, where within the data, and to what extent
nd degree their assistance is needed.As a reminder, a circumstantial
onlinearity represents a lack of available or adequate a priori infor-
Downloaded 19 May 2011 to 129.7.52.192. Redistribution subject to S
ation. It becomes a linear problem when adequate a priori informa-
ion is available. Depth imaging is a linear problem with a weighted
um over data �i.e., linear in data� given the availability of an ade-
uate velocity model. The first term in the imaging subseries is the
onventional linear-imaging result, which would be the depth-imag-
ng answer if a priori velocity information and a concomitant linear-
maging algorithm were both adequate. The second term in the imag-
ng subseries �the first beyond linear� determines inside its integrand
f the a priori information and concomitant images are adequate. If
o, the integrand is zero and it signals to the rest of the imaging sub-
eries that there is nothing for them to do with this particular data set.
ubseries that address circumstantial nonlinearity �whether for
epth imaging or removing internal multiples� decide first from the
ata if there is a need for their services. They go into action only if
hey decide they are needed. That is called purposeful perturbation
heory — a consequence of the intelligence and purposefulness of
irect inversion. With this as a background and motivation, we re-
iew the ISS briefly, providing the basis and justification for the
tatements made in this introduction, and move toward our specific
essage and goal.
The content that follows will be in two major sections. First, we

eview the inverse scattering series and provide the framework for
he issues we address here. Then, we describe our subsequent think-
ng and issues that relate to �1� the distinction between solving a di-
ect forward algorithm in an inverse sense and a direct inverse, �2�
ow the direct inverse solution stands alone in providing the clarity
f explicit solutions and the data those direct inverse solutions de-
and, and �3� the meaning of linear inverse as linear approximation

n the data and that linear inverse actually corresponds to the first and
inear estimate of a nonapproximate and nonlinear direct inverse so-
ution.

Next, we describe that thinking as it actually occurred and
volved in our research and discussions. We also describe the appar-
nt obstacles in logical consistency and their resolution on the road
hat the authors traveled which culminated in our message here. We
ecognize that this section is not typical for scientific reporting, but
he reader might appreciate and hopefully benefit from our steps
long the path and from our deliberations that eventually arrived at
hat thinking, rather than a simple delivery of the conclusions.

INVERSE SCATTERING SERIES: THE ONLY
DIRECT AND NONLINEAR INVERSION

FOR A MULTIDIMENSIONAL SUBSURFACE

As noted above, there are many direct forward or modeling meth-
ds. However, the ISS is the only direct inversion method for a mul-
idimensional acoustic, elastic, or anelastic earth.

The ISS can accommodate both the intrinsic and the circumstan-
ial nonlinearity, separately and in combination. The nonlinearities
re accommodated directly in terms of data, without the need in prin-
iple or practice to determine or estimate actual properties that gov-
rn wave propagation in the subsurface. The inverse series is the
nly inverse method with the capability of directly addressing and
nverting either type of nonlinearity. It is also unique in its communi-
ation that, starting from one single set of ISS equations, �1� all pro-
essing goals and objectives can be achieved in the same essential
emplate and manner, with distinct isolated-task inverse scattering
ubseries for each processing goal; and �2� with the same use of the
mplitude and phase of seismic data directly and without subsurface
EG license or copyright; see Terms of Use at http://segdl.org/
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WCD4 Weglein et al.
nformation �as free-surface multiples are removed�. These qualities
nd properties are unique to the ISS.

The ISS �Weglein et al., 2003, Weglein et al., 1997 and references
herein� has the following characteristics:

� It contains the capability to achieve all major processing objec-
tives: free-surface multiple removal, internal multiple removal,
depth imaging, Q compensation, and direct nonlinear target
identification. All objectives are achievable directly in terms of
measured data without a need to know, determine, or even to es-
timate approximately any information related to subsurface
properties that govern the propagation of waves in the actual
subsurface. In contrast, this information is required by conven-
tional linear migration and migration-inversion methods to lo-
cate and identify targets.

� Within the inverse scattering series, distinct direct algorithms
input the data and output each of the processing objectives list-
ed in item �1� through the introduction of the isolated-task sub-
series concept.

� Among the tasks listed above: the first and second are each
achievable by a distinct earth-model-type independent algo-
rithm, without a single line of code that changes for an acoustic,
elastic, heterogeneous, anisotropic, or anelastic earth.

� For the removal of free-surface and internal multiples, the in-
verse series performs those distinct inverse tasks without divid-
ing any quantity or inverting any matrix. These two multiple-
removal tasks involve only multiplying data times data, which
accounts for their robustness and stability.

For tasks that go beyond multiple removal �e.g., depth imaging,
onlinear direct AVO, and Q compensation� the inverse step is al-
ays the same. In the marine case, this step is only in terms of water-

peed whole-space Green’s functions; it is provided by a single wa-
er-speed FK-Stolt migration, and involves a single, unchanged, an-
lytic algebraic division in the Fourier domain for each term in the
nverse series. No need exists for a generalized inverse, model

atching, indirect approaches or proxies for subsurface informa-
ion, searches �local or global�, downward continuation and strip-
ing, or background updating schemes with their well-documented
ssues and pitfalls of low-frequency data demands and often inade-
uate earth-model types.

SCATTERING THEORY, THE FORWARD OR
MODELING SERIES, AND THE INVERSE

SCATTERING SERIES

Scattering theory is a perturbation theory. It provides the exact
anner in which alterations �perturbations� in any and/or all medi-

m properties relate to the concomitant change �perturbation� in the
avefield that experiences the altered �perturbed� medium. We map

he language of scattering theory to the purposes of seismic explora-
ion by considering the actual earth properties as consisting of a ref-
rence medium �chosen by us� plus a perturbation of the reference
edium, where the combination of reference and perturbation corre-

pond to the actual subsurface. Scattering theory then relates the per-
urbation �the difference between the reference and actual medium
roperties� to the scattered wavefield �the difference between the
eference and actual medium wavefields�. We begin with the basic
ave equations governing wave propagation in the actual medium,
Downloaded 19 May 2011 to 129.7.52.192. Redistribution subject to S
LG�� , �1�

nd in the reference medium,

L0G0�� , �2�

here L and L0 are differential operators that describe wave propa-
ation in the actual and reference media, respectively, and G and G0

re the corresponding Green’s operators. The � on the right side of
oth equations is a Dirac delta operator and represents an impulsive
ource. Throughout this paper, quantities with subscript “0” are for
he reference medium, and those without the subscript are for the ac-
ual medium.

Following closely Weglein et al. �1997�, Weglein et al. �2002�,
nd Weglein et al. �2003�, we define the perturbation V�L0�L.
he Lippmann-Schwinger equation

G�G0�G0VG �3�

s an operator identity relating G, G0, and V �see, e.g., Taylor, 1972�.
terating this equation back into itself generates the forward-scatter-
ng series

G�G0�G0VG0�G0VG0VG0� ¯ . �4�

hen the scattered field � s �G�G0 can be written as

� s�G0VG0�G0VG0VG0� ¯ � �� s�1� �� s�2� ¯ ,

�5�

here �� s�n is the portion of � s that is nth order in V.
Modeling methods, such as finite differences and finite element,

enerate the wavefield directly with input in terms of actual medium
roperties. Forward-scattering theory also models data with the ac-
ual medium properties but being a perturbation theory, the pre-
cribed medium properties are separated into L0 and V. The actual
avefield G is provided in terms of L, where L�L0�V, L0 enters

hrough G0, and V enters as V. The expansion of G�G0 in orders of
is unique and is a generalized Taylor �really geometric� series with
rst term a�G0 and the rate r�VG0. This forward-scattering or
orward-modeling equation communicates that any change in medi-
m properties between L0 and L, characterized by perturbation oper-
tor V, will lead to a change in the wavefield that is always related
onlinearly to V. Any change in medium properties at a single point,
hroughout a region, on a surface, or everywhere in space, or a
hange of medium properties of whatever magnitude at any single
oint will instigate this nonlinear response.

This forward-scattering relationship is the complete and multidi-
ensional extension and generalization of the Zoeppritz relations
here any change in any mechanical property across a single reflec-

or produces reflection coefficients that are related nonlinearly to
and generated by� the change in mechanical property. The forward
onlinear relationship between the scattered field G�G0 and the
edium perturbation V implies a nonlinear relationship in the oppo-

ite direction of V nonlinearly related to the scattered wavefield. The
atter supposition is supported by the simple geometric series analog
or G�G0�S�ar / �1�r� and then r�S / �S�a� and a series in
/a. The inversion problem relates data �or measured values of G

G0� to V and leads to the ISS. Terms in the inverse series are an ex-
ansion of V in orders of the measured data and a generalization of
n inverse geometric series — and each term in that nonlinear expan-
ion is unique. Now, we will show that substituting this inverse se-
ies form into the forward series provides an equation for each order
EG license or copyright; see Terms of Use at http://segdl.org/
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Linear inversion WCD5
f V’s expansion Vn that provides a unique and exact solution for that
rder of contribution to V. The measured values of � s are the data D,
here

D� �� s�ms, �6�

n which ms represents “on the measurement surface.” In the ISS,
xpanding V as a series in orders of D,

V�V1�V2�V3� ¯ , �7�

hen substituting equation 7 into equation 5 and evaluating equation
on the measurement surface yields

D� �G0�V1�V2� ¯ �G0�ms� �G0�V1�V2� ¯ �G0�V1

�V2� ¯ �G0�ms� ¯ . �8�

etting terms that have equal order in the data equal leads to the
quations that determine V1, V2,. . . directly from D and G0:

D� �G0V1G0�ms, �9�

0� �G0V2G0�ms� �G0V1G0V1G0�ms, �10�

nd

0� �G0V3G0�ms� �G0V1G0V2G0�ms� �G0V2G0V1G0�ms

� �G0V1G0V1G0V1G0�ms. �11�

quations 9–11 permit the sequential calculation of V1, V2,. . ., and,
ence, achieve full inversion for V �see equation 7� from the record-
d data D and the reference wavefield �i.e., the Green’s operator of
he reference medium� G0. Therefore, the ISS is a multidimensional
nversion procedure that directly determines physical properties us-
ng only reflection data and reference medium information. The ref-
rence medium is often chosen as water in the marine case.

If the subsurface medium properties V can be determined directly
rom data and water speed, then all intermediate steps toward that
oal �e.g., removing free-surface and internal multiples, depth imag-
ng, nonlinear direct AVO, and Q compensation� each can be
chieved directly and nonlinearly in terms of data and a single, un-
hanged reference medium of water. Earlier in this paper, we defined
ifferent types of nonlinearity: �1� intrinsic, �2� circumstantial, and
3� the combination. The ISS, in producing changes in medium prop-
rties V from reflection data G�G0, is directly and uniquely provid-
ng the order-by-order solution to the intrinsic nonlinearity, which
e associate with inverting the Zoeppritz equations and multidi-
ensional target-identification generalizations. Furthermore, be-

ause all objectives and tasks associated with inversion are achieved
sing the ISS directly in terms of data and water speed without a pri-
ri information, then issues involving circumstantial nonlinearity
lso are contained as distinct task-specific subseries of the ISS. The
SS is direct and nonlinear; it is the most comprehensive data-driven
achine.
For our purposes here, the absolutely critical point to recognize at

his juncture is that the equations for V1, V2,. . . are exact equations for
1, V2,. . ., where V1, V2,. . . are linear and quadratic estimates for V,

espectively…but the equations for V1, V2,. . . are the exact equations
or the latter quantities. That the equations for V1, V2,. . . are each ex-
ct for those quantities is a rigorous mathematical result derived
rom the theorem that equal orders in a parameter �data� are equal on
oth sides of an equation.
Downloaded 19 May 2011 to 129.7.52.192. Redistribution subject to S
Below, we present the progression of thinking that led to the mes-
age and conclusions of this paper, starting with the simpler acoustic
ase as a warm-up and training exercise, and progressing to the elas-
ic world where the situation is more complicated and the conse-
uences are significant and substantive.

ACOUSTIC CASE

We begin to examine issues that relate to necessary and sufficient
ata requirements for direct linear and nonlinear inversion algo-
ithms in the relatively simple acoustic world. In this section, we will
onsider a 1D acoustic two-parameter earth model �e.g., bulk modu-
us and density or velocity and density�. We start with the 3D acous-
ic wave equations in the actual and reference media:

� �2

K�r�
� � ·

1

��r�
��G�r,rs;���� �r�rs� �12�

nd

� �2

K0�r�
� � ·

1

�0�r�
��G0�r,rs;���� �r�rs�, �13�

here G�r,rs;�� and G0�r,rs;�� are the free-space causal Green’s
unctions describing wave propagation in the actual and reference
edia, respectively. The P-wave bulk modulus is K�c2�, c is
-wave velocity, and � is the density. We assume both �0 and c0 are
onstants. For the simple 1D case, the perturbation V has the follow-
ng form:

V�z,� ��
�2��z�

K0
�

1

�0
� �z�

� 2

�x2 �
1

�0

�

� z
� �z�

�

� z
,

�14�

here � �1�K0 /K and � �1��0 /� are the two parameters we
hoose to perform the inversion.

Similar to equation 7, expanding V, �, and � in different orders of
ata and assuming the source and receiver depths are zero, we can
etermine the linear solution for �1 and � 1 in the frequency domain
Zhang, 2006�:

D�z,� ���
�0

4
� 1

cos2 �
�1�z�� �1� tan2 � �� 1�z�	,

�15�

here D�z,� � is a shot record D�x,t� that is first Fourier-transformed
ver x and t to D�kg,��. Next, we perform a change of variables from
emporal frequency to vertical wave number as D��2qg,� � with qg

��� /c0�2�kg
2�1/2 and tan � �kg /qg, and finally it is inverse-trans-

ormed from �2qg to z to get D�z,� �. Please see equation 3.11 in
hang �2006� for further details.
Let us consider the following logic. Equation 15 is an exact equa-

ion for the linear estimates �1�z� and � 1�z�. Choosing two �or more�
alues of � will represent the means to solve equation 15 for �1�z�
nd � 1�z�.

For a single-reflector model, the left side of equation 15 is the mi-
ration of the surface-recorded data. The migration provides a step
unction at the depth of the reflector whose angle-dependent ampli-
ude is the reflector’s angle-dependent reflection coefficient.
EG license or copyright; see Terms of Use at http://segdl.org/
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WCD6 Weglein et al.
The right side of equation 15 can be rewritten as

�
�0

4
��1�z��� 1�z�� ��1�z��� 1�z��tan2 � � . �16�

Separately, we know that the exact plane-wave reflection coeffi-
ient is �e.g., Keys, 1989�

R�� ��
��1/�0��c1/c0�
1�sin2 � �
1� �c1

2/c0
2�sin2 �

��1/�0��c1/c0�
1�sin2 � �
1� �c1
2/c0

2�sin2 �
.

�17�

e can find a Taylor series in R as a function of sin2 � or another Tay-
or series using

sin2 � �
tan2 �

1� tan2 �
. �18�

his series is

R�� ��R�tan2 � ��R�tan2 � �0�

���dR�tan2 � �
d�tan2 � � 	� tan2 � �0

· tan2 �

���dR2�tan2 � �
d�tan2 � �2 	�

tan2 � �0
·
tan4 �

2
�¯

�19�

quation 19 is exact, and the amplitude of the step-function in equa-
ion 16 �after dropping the z-dependence� is

R�tan2 � ���1�� 1� ��1�� 1�tan2 � . �20�

he first term in the ISS is an exact equation for the linear estimates
1 and � 1 of � and � , respectively.

econciling the exactness of equation 20 with the
xactness of equation 19

Equation 20 would seem to represent a truncated, and therefore,
pproximate form of the Zoeppritz exact reflection coefficient
equation 19�.

From the derivation of the inverse scattering series, equation 20 is
ot an approximation, but the exact equation for the linear estimates
1 and � 1. On the other hand, equation 19 is the Zoeppritz equation
nd represents an indisputable cornerstone of elastic wave theory.
he required consistency between equation 19 and 20 demands that
1 and � 1 be functions of � .
Let us see where that supposition then takes us from equation 20,

hich can be rewritten as:

R�tan2 � ���1�� ��� 1�� �� ��1�� ��� 1�� ��tan2 � .

�21�

f two values of � are chosen, say � 1 and � 2, then equation 21 will
ead to two equations with four unknowns, �1�� 1�, �1�� 2�, � 1�� 1�,
nd � 1�� 2�. That is not good news. The problem here is that we have
orgotten the basic meaning and starting point in defining �, � and

1, � 1.
In a direct determination of a parameter from the ISS expansion in

rders of the data, it is a critically important first step to ensure that
Downloaded 19 May 2011 to 129.7.52.192. Redistribution subject to S
he data �in terms of which a specific parameter is being expanded�
re sufficient to determine that parameter. The data needed to deter-
ine a parameter are dependent upon what other parameters are �or

re not� in the model. In other words, the required data is specified
ith the context in which that parameter resides �acoustic, elastic,

nd so forth�.
Now consider a two-parameter world defined by ��z� and � �z�,

nd the expansions of � and � in orders of the data. In this case, if we
uppose that � and � are expandable in terms of data at two different
lane-wave angles, assuming that such a relationship between
�z,� 1�, D�z,� 2� and � and � exists and is sufficient to determine �

nd � �not �1 and � 1�, then we can write the series for ��z� and � �z�
s

��z���1�z,D�z,� 1�,D�z,� 2����2�z,D�z,� 1�,D�z,� 2��

� ¯ . �22�

n a compact notation,

��z���1�z,� 1,� 2���2�z,� 1,� 2�� ¯ , �23�

here �1 is the portion of � linear in the data set �D�z,� 1�,D�z,� 2��.
imilarly,

� �z��� 1�z,� 1,� 2��� 2�z,� 1,� 2�� ¯ . �24�

If the model allowed only bulk modulus changes but not density
ariation, then the data required to solve for � would consist only of
ata at a single angle and in that single-parameter world,

��z���1�z,� 1���2�z,� 1�� . . . . �25�

ow in the two-parameter inverse problem, the data are

�D�z,� 1�
D�z,� 2�

	 �26�

nd then D�G0V1G0 is equal to

�D�z,� 1�
D�z,� 2�

	���1� tan2 � 1� �1� tan2 � 1�
�1� tan2 � 2� �1� tan2 � 2�

	
���1�z,� 1,� 2�

� 1�z,� 1,� 2�
	 �27�

nd �� 1�z,� 1,� 2�
�1�z,� 1,� 2�� is related linearly to �D�z,� 1�

D�z,� 2��. The values of �1 and � 1

ill depend on which particular angles � 1 and � 2 were chosen, and
hat is anticipated and perfectly reasonable, because being a linear
pproximation in the data could �and should� be a different linear es-
imate depending on the data subset that is considered.

Equation 27 �a matrix equation� is the first term in the inverse se-
ies and determines �1 and � 1, the linear estimate of � and � .

he key point

The lesson here is that the inverse problem does not start with
0V1G0�D, but with V�V1�V2�V3� . . . and the latter equa-

ion is driven by a view of which data set can determine the operator
.
This might seem like a somewhat useless academic exercise be-

ause equation 27 is the equation one would have solved for �1 and
1 if their � dependence is ignored entirely. However, it is anything
ut academic. There are at least two problems with that conclusion.
EG license or copyright; see Terms of Use at http://segdl.org/
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Linear inversion WCD7
he above analysis is valuable because �1� with �1 and � 1 indepen-
ent of � , we have difficulty in claiming or satisfying the important
equirement that the first equation in the inverse series is exact, and
2� more importantly, we can get into serious conceptual and practi-
al problems in the elastic case if we do not have a very clear grasp of
he underlying inverse issues and relationships in the acoustic case.

ELASTIC CASE

The scattering theory and the ISS for the 1D isotropic elastic earth
re developed in Zhang and Weglein �2009a�. We refer the reader to
hat paper �in this issue� for details of the elastic direct inverse and, in
articular, for transforming the scattering equations from displace-
ent to their PS representation.

n the displacement space

In the following, we start the inversion problem in two dimen-
ions. The 2D elastic wave equation is �A. B. Weglein and R. H.
tolt, personal communication, 1992�

Lu����2�1 0

0 1
	

�� � 1	 � 1�� 2
� 2 � 1�	 �2
�� 2�� 2
� 1

� 2�	 �2
�� 1�� 1
� 2 � 2	 � 2�� 1
� 1
	�

��u1

u2
�� f, �28�

here u� � u2

u1��displacement, � �density, 	 �bulk modulus
���2 where � �P-wave velocity�, 
�shear modulus ���� 2

here � �S-wave velocity�, � � temporal frequency �angular�, � 1

nd � 2 denote the derivative with respect to x and z, respectively, and
is the source term.
For constant ��,	 ,
�� ��0,	 0,
0�, ��,� �� ��0,� 0�, the opera-

or L becomes

L0���0�2�1 0

0 1
	�� 	 0� 1

2�
0� 2
2 �	 0�
0�� 1� 2

�	 0�
0�� 1� 2 
0� 1
2�	 0� 2

2 	� .

�29�

Then for a 1D earth, defining a� �� /�0�1, a	 �	 /	 0�1 and

 �
 /
0�1 as the three parameters we choose for the elastic in-
ersion, the perturbation V�L0�L can be written as

���0� a��2��0
2a	� 1

2�� 0
2� 2a
� 2 ��0

2a	 �2� 0
2a
�� 1� 2�� 0

2� 2a
� 1

� 2��0
2a	 �2� 0

2a
�� 1�� 0
2a
� 1� 2 a��2��0

2� 2a	� 2�� 0
2a
� 1

2
� .

�30�

For convenience �e.g., A. B. Weglein and R. H. Stolt, personal
ommunication, 1992; Aki and Richards, 2002�, we change the basis
nd transform the equations in the displacement domain to PS space,
nd finally, we do the elastic inversion in the PS domain.

inear inversion of a 1D elastic medium in PS space

The equation for the first term in the ISS D�G0V1G0 in the dis-
lacement domain can be written as the following form in the PS do-
ain:
Downloaded 19 May 2011 to 129.7.52.192. Redistribution subject to S
�D̂PP D̂PS

D̂SP D̂SS
	��Ĝ0

P 0

0 Ĝ0
S
	�V̂1

PP V̂1
PS

V̂1
SP V̂1

SS
	�Ĝ0

P 0

0 Ĝ0
S
	 .

�31�

his leads to four equations:

D̂PP� Ĝ0
PV̂1

PPĜ0
P, �32�

D̂PS� Ĝ0
PV̂1

PSĜ0
S, �33�

D̂SP� Ĝ0
SV̂1

SPĜ0
P, �34�

nd

D̂SS� Ĝ0
SV̂1

SSĜ0
S. �35�

For the P-wave incidence case �see Figure 1�, assuming zs�zg

0 and in the �ks,zs;kg,zg;�� domain, the solution of equation 32 can
e written as

D̃PP��g,� ���
1

4
�1� tan2 � �ã�

�1���2�g��
1

4
�1

� tan2 � �ã	
�1���2�g��

2� 0
2 sin2 �

�0
2

�ã

�1���2�g�, �36�

here we used kg
2 /� g

2� tan2 � and kg
2 / �� g

2�kg
2��sin2 � , and � is

he P-wave incident angle.
In the earlier section on acoustic inversion, � 0 and � 1 refer to rel-

tive changes in density, whereas in this elastic section � 0 and � 1

efer to relative change in shear-wave velocity. For the elastic inver-
ion, in the special case when � 0�� 1�0, equation 36 reduces to
he acoustic two-parameter case equation 7 in Zhang and Weglein
2005� for zg�zs�0:

0
α ,,

PP
T

PP
R

SP
R

SP
T

0
β

0
ρ

1
α ,, 1

β
1
ρ

θ

Incident P-wave

igure 1. Response of incident compressional wave on a planar elas-
ic interface. �0, � 0, and �0 are the compressional wave velocity,
hear-wave velocity and density of the upper layer, respectively; �1,

1, and �1 denote the compressional wave velocity, shear wave ve-
ocity, and density of the lower layer. The coefficients of the reflected
ompressional wave, reflected sheer wave, transmitted compres-
ional wave, and transmitted shear wave are denoted by RPP, RSP, TPP,
nd TSP, respectively �Foster et al., 1997�.
EG license or copyright; see Terms of Use at http://segdl.org/
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D̃�qg,� ���
�0

4
� 1

cos2 �
�̃1��2qg�� �1� tan2 � �

��̃ 1��2qg�� . �37�

irect nonlinear inversion of 1D elastic medium in PS
pace

The equation for the second term in the ISS G0V2G0�
G0V1G0V1G0 in the displacement domain can be written in the PS

omain as

�Ĝ0
P 0

0 Ĝ0
S
	�V̂2

PP V̂2
PS

V̂2
SP V̂2

SS
	�Ĝ0

P 0

0 Ĝ0
S
	���Ĝ0

P 0

0 Ĝ0
S
	

��V̂1
PP V̂1

PS

V̂1
SP V̂1

SS
	�Ĝ0

P 0

0 Ĝ0
S
	�V̂1

PP V̂1
PS

V̂1
SP V̂1

SS
	�Ĝ0

P 0

0 Ĝ0
S
	,

�38�

hich leads to the four equations

Ĝ0
PV̂2

PPĜ0
P�� Ĝ0

PV̂1
PPĜ0

PV̂1
PPĜ0

P� Ĝ0
PV̂1

PSĜ0
SV̂1

SPĜ0
P,

�39�

Ĝ0
PV̂2

PSĜ0
S�� Ĝ0

PV̂1
PPĜ0

PV̂1
PSĜ0

S� Ĝ0
PV̂1

PSĜ0
SV̂1

SSĜ0
S,

�40�

Ĝ0
SV̂2

SPĜ0
P�� Ĝ0

SV̂1
SPĜ0

PV̂1
PPĜ0

P� Ĝ0
SV̂1

SSĜ0
SV̂1

SPĜ0
P,

�41�

nd

Ĝ0
SV̂2

SSĜ0
S�� Ĝ0

SV̂1
SPĜ0

PV̂1
PSĜ0

S� Ĝ0
SV̂1

SSĜ0
SV̂1

SSĜ0
S.

�42�

ecause V̂1
PP relates to D̂PP, V̂1

PS relates to D̂PS, and so on, the four
omponents of the data will be coupled in the nonlinear elastic inver-
ion. Therefore, we cannot perform the direct nonlinear inversion
ithout knowing all components of the data. Equations 31–42 repre-

ent the necessary and sufficient data requirements for the linear and
igher-order direct inversion for any one of the elastic mechanical
roperty changes. Each of the linear and higher-order terms is the
nique expansion of that mechanical property in terms of a data that
an invert directly for those quantities.

The three parameters we seek to determine are

a	 → relative change in bulk modulus
a�→ relative change in density
a
→ relative change in shear modulus

hese parameters are to be expanded as a series in the data. Which
ata?

The answer is once again the data needed to directly determine
hose three quantities.

The thesis of Zhang �2006� demonstrates for the first time not only
n explicit and direct set of equations for improving upon linear esti-
Downloaded 19 May 2011 to 129.7.52.192. Redistribution subject to S
ates of the changes in those elastic properties, but also perhaps
qually and even more importantly, the absolutely clear data require-
ents for determining a	 , a�, and a
.
The data requirements are

D��D̂PP D̂PS

D̂SP D̂SS
	 �43�

or a 2D earth and generalize to a 3�3 matrix for a 3D earth with SH
nd SV shear waves.

The 2D message is delivered in equation 38 �or equations 39–42�
hat the first nonlinear contribution to a	 , a
, and a� requires that
ata; and hence, the exact determination of those elastic quantities
lso requires that data set �Weglein, 2009�:

�VPP VPS

VSP VSS	��V1
PP V1

PS

V1
SP V1

SS	��V2
PP V2

PS

V2
SP V2

SS	� ¯ .

�44�

The logic is as follows:

�a	

a


a�


equires

�D̂PP D̂PS

D̂SP D̂SS
	

ecause

�a	
�2�

a

�2�

a�
�2� 

equires

�D̂PP D̂PS

D̂SP D̂SS
	 .

ence

�a	
�1�

a

�1�

a�
�1� 

ust mean linear in

�D̂PP D̂PS

D̂SP D̂SS
	,

.e., linear in the data needed to determine

�a	

a


a�

 .

Inverting
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Linear inversion WCD9
D̂PP�G0
PV1

PPG0
P �45�

lone for a	
�1�, a


�1�, and a�
�1�, although mathematically achievable, cor-

esponds to a linear approximate forward problem for PPdata solved
n an “inverse sense.” The direct inversion of the elastic heteroge-
eous wave equation defines the data needed to invert for those
uantities, in principle.Alinear inversion is a first and linear approx-
mate term in a series solution that inverts data directly from the elas-
ic wave equation for changes in earth’s mechanical properties.

That definitive, linear inverse definition requires the linear ap-
roximation to be linear in the collection of data components. In the
impler case of acoustics, and inverting the heterogeneous acoustic
quation directly for changes in acoustic properties, the direct in-
erse solution �Zhang, 2006� provided by the ISS, is a series in the
easured pressure wavefield, and the linear acoustic inverse is lin-

ar in the collection of measurements of the pressure wavefield
eeded to solve the direct inverse. But the linear inverse in the elastic
ase is linear in all of the data components, because the direct elastic
nversion is an expansion in all data components.

Solving for a	
�1�, a


�1�, and a�
�1� from D̂PP alone is a model matching of

P data and something less than a linear inverse.
The ISS and task-specific subseries first need to treat the linear

erm with respect and then the higher-order terms can carry out their
urpose.

If the linear estimate is not calculated correctly, the ISS cannot re-
over or compensate — it wants the linear estimate to be the linear
stimate, and never expects it to be exact or close to exact, but it nev-
r expects it to be less than linear. Let linear be linear.

The power and promise of the ISS derives from its deliberate, di-
ect, physically consistent, and explicit nature. It recognizes that
hen there is any perturbation in a medium, the associated perturba-

ion in the wavefield always is related nonlinearly to that change.
The inverse implies that the medium perturbation itself is related

onlinearly to the perturbation in the wavefield. Thus, the medium-
roperty perturbation operator is related nonlinearly to the change in
he wavefield on the measurement surface, i.e., to the measured data.

We assume the scattered field and the perturbation can be expand-
d in orders of the medium perturbation V and the measured data D,
espectively:

� s� �� s�1� �� s�2� �� s�3� . . . �46�

nd

V�V1�V2�V3� ¯ , �47�

here �� s�n is the portion of � s which is the nth order in V and where
n is the portion of V which is the nth order in the data D, i.e., the
easured values of � s. The entire foundation behind the ISS is based

n equations 46 and 47, expressing the indisputable nonlinear rela-
ionship between changes in medium properties and the concomitant
hanges in wavefields. This is all that needs to be assumed. These
quations simply communicate the identity known as the Lippmann-
chwinger equation, which governs perturbation theory, and its for-
ard, nonlinear modeling series and nonlinear inverse-series forms.
Beyond that point, the process and procedure for determining

1,V2,V3,. . . is out of our hands and away from our control. How to
nd V1 from D is prescribed and what to do with V1 to determine V2 is
rescribed also. That nonlinear explicit and direct nature, and the
teps to determine those terms V1,V2,V3,. . . are not decision-making
pportunities. If we decide what to do with V rather than have the
1

Downloaded 19 May 2011 to 129.7.52.192. Redistribution subject to S
onlinear relationship between data and V decide, then we step away
rom a single and defined physics into, e.g., the math world of itera-
ive linear inversion or model matching. How do we formulate a

ultiple-removal algorithm concept in an iterative linear inverse or
odel-matching scheme? How do we formulate a model-type inde-

endent multiple-removal method from a full-waveform inversion,
r any indirect-inversion model-matching procedure? The latter
ims immediately to either improve or match the model properties
ith the subsurface. From an inverse-scattering-series perspective,

he latter all-or-nothing strategy �1� misses the opportunity to
chieve other useful but less daunting tasks such as multiple removal
nd depth imaging; and �2� begins at the first step straight into the
ost challenging task of parameter estimation, with all the pitfalls of

nsufficient model types and bandwidth sensitivities.
For the ISS, the decisions are not under our control or influence. It

as one physical reference model, the water, and a single unchanged
eparation of the earth into a reference medium and a general pertur-
ation operator that can accommodate a very wide range of earth
odel types. The model types need not be specified unless we want

he direct, nonlinear AVO subseries. The ISS provides a set of direct
quations to solve, with an analytic, unchanged inverse operation.

The physics-consistent direct-inverse formalism of the inverse
cattering series stands alone in predicting that we require all four

omponents of the data � D̂PP D̂PS

D̂SP D̂SS� to even estimate elastic properties
inearly. Iterative linear inversion tries to substitute a set of constant-
y changed, forward problems with linear updates for a single, en-
irely prescriptive, consistent, and explicit nonlinear physics. The
atter is the inverse scattering series; the former �iterative linear in-
ersion� has an attraction to linear inverses �and generalized invers-
s�, which have no single physical theory and consistency. Linear in-
ersion and generalized inverse theory are part of standard graduate
raining in geophysics; hence it is easy to understand trying to recast
he actual nonlinear problem into a set of iterative linear problems
here the tools are familiar. Model-matching schemes and iterative-

y linear inversion are reasonable and sometimes useful but they are
ore math than physics. Thus, they have no way to provide the

ramework for inversion that equations 46 and 47 provide by staying
onsistent with physics.

The practical, added value that direct ISS nonlinear inversion pro-
ides beyond linear inversion is described in Zhang �2006�, and
hang and Weglein �2005, 2006, 2009a, and 2009b�. There are cir-
umstances in which very different target lithologies have very simi-
ar changes in mechanical properties. The added value is demon-
trated in 4D application in discriminating between pressure and flu-
d-saturation effects. That distinction results in the difference be-
ween a drill and a no-drill decision.

DISCUSSION

Indirect inverse methods �e.g., model matching, cost-function
earch engines, optimal stacking, full-waveform inversion, and iter-
tive linear inversion� at best seek to emulate or to satisfy some prop-
rty or quality of an inverse solution, rather than providing the solu-
ion directly. Here we communicate a message on the critical distinc-
ion that is often ignored between modeling and inversion, and the
ven greater difference between direct-inverse solutions and indi-
ect methods that seek that same goal.

We describe the algorithmic and practical consequences of this in-
reased conceptual clarity. In particular, we examine the commonly
eld view that considers PP reflection data �e.g., Stolt and Weglein,
EG license or copyright; see Terms of Use at http://segdl.org/
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985; Boyse and Keller, 1986� to be adequate for estimating changes
n mechanical properties, and that is used today in methods for both
inear and nonlinear estimates of mechanical property changes
cross a reflector. We show, from the definitiveness of a direct-inver-
ion perspective, that PP data are fundamentally insufficient. The di-
ect inversion for those changes in mechanical properties provided
y the ISS communicates that all components of data �PP, PS, SS,…�
re required for either linear and/or nonlinear direct inversion. Lin-
ar inversion is defined here as the linear approximate solution to the
irect inverse problem. For indirect methods or methods with mod-
ling as a starting point, there is no reason to suspect or conclude that
P data would be fundamentally and conceptually inadequate. Indi-
ect methods are neither equivalent to nor a substitute for direct
ethods. We point out the general conceptual and algorithmic dif-

erences.
The direct nonlinear solution given by the ISS provides the first

nambiguous and consistent meaning for a direct, approximate lin-
ar inverse solution. Inverting PP data linearly for approximate
hanges in earth’s mechanical properties provides a linear approxi-
ate solution to the PP data equation, but not a linear approximate

nverse solution for changes in earth’s mechanical properties. To
chieve the higher bar of a linear approximate inverse solution re-
uires a nonapproximate inverse solution, as a starting point, as ei-
her a closed form or expressed as a series that is going to be reduced
nd simplified in a linear approximate form. The ISS represents a
onapproximate fully nonlinear and direct inverse solution. The di-
ect inversion of earth’s mechanical properties requires PP, PS, and
S data in a 2D world, and PP, PSv, PSh, SvSv, ShSh, and SvSh in a
D earth. Hence, the linear approximate inverse solution must be lin-
ar in the data that allow the linear solution to correspond to the lin-
ar approximation of the inverse solution. The PPdata alone can pro-
uce an approximate solution to a forward PP equation, but PP, PS,
nd SS can provide a linear approximate inverse solution.

Hence, the conclusion is that only multicomponent data can pro-
uce a linear approximate inversion solution, which is the first step
oward a complete nonlinear and direct solution.

We recognize that the changes in material properties across a sin-
le reflector and the corresponding reflection coefficients and reflec-
ion data have a nonlinear relationship in a modeling and therefore
n inversion sense. However, the key point is that although changes
n earth’s mechanical properties at an interface can �through the
oeppritz relations� directly, nonlinearly, exactly, and separately de-

ermine each of the PP, PS, and SS reflection coefficients, it requires
ll of those reflection coefficients taken together to determine any
ne or more changes in mechanical properties. That message is nei-
her obvious nor reasonable, or even plausible. However, the mes-
age here is that it is all of those difficult and unattractive things, and
et it is also unambiguously and unmistakably true. In general, in-
ersion or processing is not modeling run backward.

Direct linear and indirect methods �e.g., full-waveform inversion�
ave not and cannot bring that clarity to the meaning and unambigu-
us prescription of the linear approximate inverse solution. Model
atching with global searches of PP data alone have no framework

r other reason to suspect the fundamental inadequacy of that PP
ata to provide a linear inverse, let alone a nonlinear solution. We
ave published using PP data to estimate changes in physical proper-
ies, and along with the entire petroleum industry, we have used PP
ata in AVO analysis. The PP data have enough degrees of freedom,
iven enough angles, to more than solve for linear estimates in
hanges in earth’s material properties. So what is the problem?
Downloaded 19 May 2011 to 129.7.52.192. Redistribution subject to S
We are fully aware that a single angle of data cannot invert simul-
aneously for several changes in earth’s mechanical properties be-
ause the degrees of freedom in the data need to be the same as in the
ought-after earth’s material properties. This is recognized and un-
erstood in inverse theory. Sufficient degrees of freedom in your
ata are a necessary but not a sufficient condition for a linear inverse
olution, although it is necessary and sufficient for solving a direct-
orward-PP relationship in an inverse sense. The fact that all compo-
ents of elastic data are absolutely baseline required to provide a
eaningful linear inverse or nonlinear inverse solution is a new,

learer, and higher bar, and a much more subtle, but in no way less-
mportant message. The fact that the ISS is the only direct and non-
inear inversion method has allowed it to:

� Stand alone and provide a framework for the very meaning of
linear inverse.

� Provide a systematic and precise way to improve upon those es-
timates directly through higher terms in the expansion of those
earth’s mechanical properties directly in terms of the data. The
required data are full multicomponent data and not only PP.

If we have an expansion for a change in a physical property �call it
, in terms of reflection data D� then schematically, V�D��V�D
0��V��D�0�D�

1
2V��D�0�D2�¯, where V�D�0��0,

��0�D is the linear estimate to V�D�, and D are the data needed to
etermine V�D�. Only the ISS provides the precise series for V�D�
nd, hence, in that process defines both the data necessary to find
�D� and its linear estimate V1�V��0�D. We cannot change the ex-
ansion variable in a Taylor series. If the data D determine the series,
hen each term including the first linear term depends on all elements
f D. The data D are multicomponent data for the determination of
hanges in elastic properties. That is the point.

The need for multicomponent data does not add a set of con-
traints beyond PP data, but provides the necessary baseline data
eeded to satisfy the fundamental nonlinear relationship between re-
ection data and changes in earth’s mechanical properties. It is a fun-
amental data need that stands with data dimensionality and degrees
f freedom. It comes in at the ground floor, before more subtle and
mportant issues of robustness and stability are examined — it is not

erely a practical enhancement or boost to PP-data inversion poten-
ial and capability. The need for multicomponent data is fundamen-
al. As with other things, it can be ignored but rarely will be ignor-
ble.

The latter PP data are fundamentally inadequate from a conceptu-
l and math-physics analysis perspective for a consistent and mean-
ngful target identification, and the needed data and methods for us-
ng that data are provided only by the directness and fully nonlinear
nd prescriptive nature of the ISS. Those unique properties and ben-
fits of the ISS are not provided by either �1� linear approximate di-
ect-inverse methods, behind all current mainstream leading-edge
igration and migration-inversion algorithms, or �2� nonlinear indi-

ect inverse methods such as iterative linear or other indirect model-
atching inversion methods, or full-waveform inversion.
We have taken the reader through the thinking process and delib-

ration within our group that brought this issue to light. It began in
he simpler acoustic world, where the difference between the for-
ard and inverse problem needed some attention and clarification.
e have raised and answered the following questions:

� What does linear in the data mean?
� Linear in what data? What are the actual data requirements
EG license or copyright; see Terms of Use at http://segdl.org/
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Linear inversion WCD11
needed to define a linear inverse as a linear approximation “in
data” to the solution of the direct nonlinear inverse problem?

� Conservation of dimension �having enough degrees of freedom
in the data to “solve” an equation� is not a sufficient condition to
define “what data,” and being able to solve an equation �in iso-
lation� is not the same as finding a physically meaningful solu-
tion or even a linear estimate.

� Solving an equation without the context and framework within
which that equation resides, and ignoring the assumptions that
lead to that equation, constitutes a dangerous and ill-considered
path.

� What are the implications for data collection and target
identification?

In summary, �1� PP data are necessary and sufficient for a direct
nversion of an acoustic medium/target, and hence PP is necessary
nd sufficient for a linear inversion for acoustic properties, but �2� all
omponents of data PP, PS, SS,… are necessary and sufficient for a
irect inversion of an elastic medium/target �provided explicitly in
hang, 2006, pp. 77�. Hence all components are required for a linear
pproximate inversion for elastic properties. The linear inverse is the
rst and linear approximation of those parameters in a series that is a
onlinear expansion in terms of data that, in principle, can determine
hose properties directly.

Zhang �2006, p. 73–75� asks and answers this question, men-
ioned in item two in the list above: What is one to do for direct non-
inear AVO of an elastic medium/target when one measures only PP
ata, as in typical towed-streamer marine data within the water col-
mn?

The response was to use the PP data in a forward-PP relationship
nd solve that in a traditional manner with three �or more angles� for
hree parameters, and then use two of those three parameters to syn-
hesize the required PS, SS… components necessary to compute di-
ect nonlinear inversion of the elastic properties, which is better than
utting zeros in places where the direct inversion expected PS, SS…
ata. This is the same issue that Matson �2000� faces in the direct
lastic inverse scattering series for ocean-bottom and onshore-mul-
iple removal. The need for multicomponent data arises as an abso-
utely necessary requirement for a direct elastic inversion for AVO
urposes or for the direct removal of multiples when the measure-
ent surface is the ocean bottom or onshore �land� and requires an

lastic reference medium.
An important point here is that the synthesized PS, SS,…and the

ctual PS, SS,… data never are equal �see Zhang, 2006, pp. 73–75,
or several examples�. The inability to use PP data alone to produce
he same linear inversion as having PP, PS, and SS data is notewor-
hy. That inability would not be the case if a linear inverse of PP data
ould produce the other data components, then inverting either PP
lone or PP, PS, and SS together would make no difference. It makes
difference, and it supports the inverse-scattering-series message

hat PP data is, in principle, inadequate to directly invert for changes
n the mechanical properties of the earth. This illustrates and high-
ights the distinction and message that our study conveys for AVO
pplications. For imaging, the indirect methods such as common im-
ge gather, CFP, CRS, and optimal moveout trajectory stacking
“path integral”�, all have surrogates and proxies for a velocity mod-
l, and yet sometimes portray the proxy as though it was somehow
eyond, above, or independent of velocity. In fact it is an attempt and
eak �necessary but not sufficient� substitute for, and admission that
elocity is what they seek, but the velocity is beyond their reach. All
Downloaded 19 May 2011 to 129.7.52.192. Redistribution subject to S
f these indirect methods believe that a direct depth imaging method
ould require an accurate velocity. The only multi-D direct inver-

ion, the inverse scattering series, stands alone in its message that a
irect depth imaging method derives from the ISS without a velocity
odel.

he role of direct and indirect methods

At this point, we feel it is important to mention that a clear and im-
ortant role exists for indirect methods, which we recognize and ap-
reciate. Among authors who recognize the need for a judicious use
f direct and indirect methods are: Verschuur et al., 1992; Carvalho
nd Weglein, 1994; Berkhout and Verschuur, 1995; Matson, 2000;
bma et al., 2005; Weglein and Dragoset, 2005; Kaplan and In-
anen, 2008. Indirect methods always are needed to complement
nd fill the gap between our deterministic direct methods and the
omplexity of the actual seismic experiment, the real subsurface,
nd the realities and compromises of acquisition. Adaptive methods
re called upon, and useful, and the part of reality outside our mod-
led physics needs serious attention as well. Treating the seismic in-
erse problem as entirely direct inversion, or �as more often is the
ase� entirely indirect, does not recognize or benefit from the mix of
istinct issues they address, and from pooling their necessary
trengths for field data application. However, in some general and
verriding sense, overall scientific and practical progress is mea-
ured as the boundary between the two moves to bring more issues
ithin the sphere of physics, and addressable by direct deterministic

ools and away from the computational world of search engines �full
avefield or otherwise� and error surfaces.
Finally, we note that the first and linear term of the elastic inverse

roblem was influenced not only by the nonlinear term; in fact, it was
efined by that term. That data-requirement message, along with the
ntire inverse-series apparatus, results from the observation that the
erturbed wavefield and the concomitant medium perturbation are
elated nonlinearly. Honor and respect that fundamental nonlinear
elationship and a physics-driven set of direct, consistent, deliberate,
nd purposeful inversion algorithms, and a clear platform and unam-
iguous framework �that explains earlier anecdotal experiences� are
he dividend and value.

CONCLUSION

A unique and unambiguous data-requirement message is sent
rom the inverse scattering series for linear and nonlinear direct in-
ersion. Other methods and approaches look at the inverse problem,
.g., either linear or beyond linear, but iterative linear or model-
atching indirect inversion methods, including so-called full-wave-
eld inversion, never have and never will provide that clarity and
efinition. Nothing other than a direct inversion ought to provide
onfidence that we are solving the problem in which we are interest-
d. The inverse scattering series defines the data and algorithms
eeded to carry out direct nonlinear inversion. That is the starting
oint for defining a linear inverse approximate solution. A linear in-
erse solution is a linear approximation to the inverse solution.Alin-
ar estimate of parameters determined using a relationship between
hose parameters and any convenient data, typically from a forward
r modeling relationship, does not warrant being labeled a linear ap-
roximation to the inverse solution. That is the essential point. Lin-
ar should mean linear with respect to the data adequate to determine
he actual inverse solution.
EG license or copyright; see Terms of Use at http://segdl.org/
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How do we know which data are adequate? Looking at modeling
quations is the wrong starting point for understanding inversion,
nd the proof is that looking at modeling PP data as a starting point
eems reasonable and plausible, but it is fundamentally wrong for
ooking at the starting point and guide for the inverse solution and
inear inverse estimates therein. The inverse problem is not the for-
ard problem run backward. Legitimate inverse solutions do not be-
in with taking a forward solution and trying to solve that relation-
hip in an inverse sense for changes in medium properties that occur
n the forward relationship. This is the crux of the logical flaw in all
urrentAVO, full-waveform inversion, and indirect methods. It is an
ssential point for clear understanding of the foundation behind our
rocessing algorithms and for the design and effective use of target
dentification and parameter estimation methods.

Modeling and forward predicting, and creating multiples by any
odeling method, �e.g., finite difference or the forward scattering

eries� require precise and detailed subsurface information about ev-
rything in the subsurface the multiple has experienced. However,
he inverse scattering series has distinct subseries for removing free-
urface and internal multiples that provide algorithms which require
bsolutely no subsurface information, and are the same algorithms
or acoustic, elastic, anisotropic, and anelastic media. Not one line of
ode changes if the earth is acoustic, elastic, anisotropic, or anelas-
ic. That is amazing, and it points out very clearly the flaw in thinking
f inversion as starting with a modeling idea or formula and then
reating inversion as a form of model matching, or forward modeling
un backward. How could one even imagine model matching and
ubtracting multiples independent of the type of earth one is adopt-
ng and modeling?

Arecent and dominant trend in many fields of inversion, including
eismic inversion, is to ignore the two kinds of inversion, direct and
ndirect, and even go so far as to define inversion as indirect model

atching, or “full-waveform” with a big computer. This study
hows certain pitfalls and serious dangers of using indirect methods.
t provides a necessary and timely reminder of the two types of inver-
ion and the unique strengths, clarity, guidance, and understanding
hat direct inversion represents.

We can model match Dpp or iteratively invert Dpp until the cows
ome home �i.e., ad infinitum�, and we will find ambiguities and res-
lution challenges. When those methods use more components of
ata, they sometimes produce less ambiguity and better resolution,
ut from, e.g., a model-matching or full-waveform-inversion per-
pective, one never guesses why. The iterative linear inverse of PP
ata is nonlinear in PP data, but it is not a nonlinear direct inverse so-
ution because it does not recognize that all components PP, PS,
S,… are needed and hence has no chance of agreeing with the direct
onlinear inverse provided only by the inverse series.

In a separate issue, the minimally realistic earth model for ampli-
ude analysis is an elastic medium that generates elastic wavefield
ata and is characterized by elastic reflection coefficients. It is an is-
ue of serious conceptual and practical concern to use an acoustic in-
erse, especially when using amplitude analysis, for synthetic or
eld data generated by an elastic medium. Much of current inversion
ractice and methodology uses the wrong data, an unrealistic earth-
odel type, and algorithms mislabeled as inversion.
We have presented a new and previously unrecognized and unher-

lded benefit of the fully nonlinear and direct multidimensional in-
ersion represented by the ISS. That new contribution is at the core
f all inversion theory. It impacts how we better understand previ-
usly observed and reported results from different groups and re-
Downloaded 19 May 2011 to 129.7.52.192. Redistribution subject to S
earchers, and it provides a firm, unambiguous platform and guide to
esearchers and explorationists. It allows us to understand, for the
ery first time, the data collection mandated and required for a mean-
ngful and consistent linear approximate inverse solution. In addi-
ion, it gives us a direct prescription and determination of the linear
stimate and a framework and systematic methodology for nonlin-
ar target identification.
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